Protocol Layering and Internet OSI IP objects passed between hosts Application Process / messages or streams Presentation Applicaton Session transport protocol Transport Transport packets Internet IP datagrams Network Data link Data link network-specific frames Physical

Contents

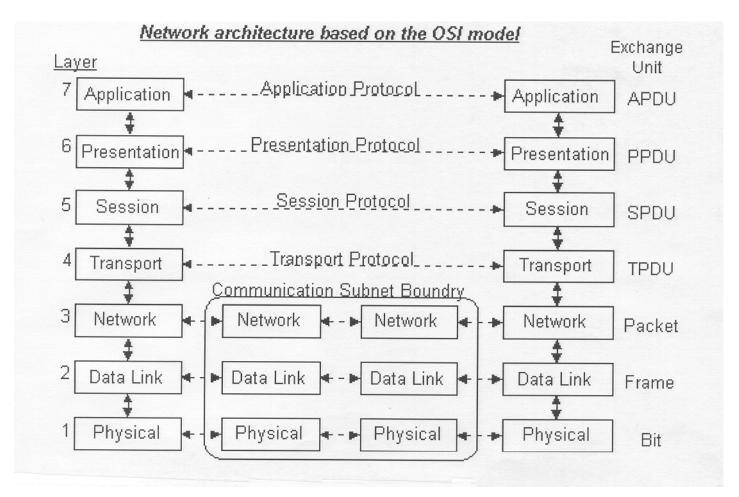
Protocol Layering Issues in Network Design Internet Design Futures Today's Internet

Protocol Layering

Advantages/Disadvantages Reference Models: OSI ARPANET Internet Encapsulation

Protocol Layering

Advantages:


Breaks down complex problem into more manageable components

Implementation details of one layer are abstracted away from other layers; each layer has its own function

Disadvantages:

Can introduce overhead, leading to intentional *layer violations*

The OSI Reference Model

The OSI Reference Model

Physical: transmits raw bits over a communication link Data link: collects a stream of bits into a larger aggregate, frame Network: routes packets among nodes

- Transport: manages end-to-end delivery of information through error and flow control
- Presentation: format of data exchanged between peers
- Session: tie together potentially different transport streams
 - Ex. video and audio streams in a teleconferencing application

The ARPANet Reference Model

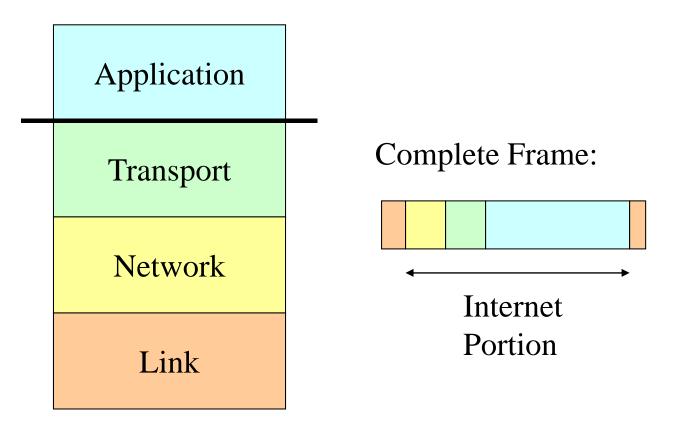
See RFC 871 by M. Padlipsky, A Perspective on the ARPANET Reference Model (1982)


3 Layer:

network interface layer (link + physical)

host-to-host layer (network)

process/application (transport/application)


Internet Protocol Stack

Encapsulation

- Layer N messages being treated as opaque data to layer N-1
- Layer N-1 *multiplexes* among several layer N messages
- Each layer adds header (trailer)
- Receiver uses header as *demultiplexing key*

Encapsulation - Example

Issues in Network Design

Objectives Placing Functionality Internet Design Philosophy

Objectives of Network Design

Scope: support a wide range of approaches
Scalability: work well with very large network (encourages simplicity)
Robustness: operate (well) under partial failures
Incremental deployment: compatibility with existing system(s)

Chae Y. Lee Placing Functionality in Network Design

Which functions belong at which layer? (reliability, routing, encryption, compression, data conversion) the end-to-end argument

application layer framing (ALF)

Telecom Systems

The End-to-End Argument

See [SRC84], "End-To-End Arguments in System Design"

The function in question can completely and correctly be implemented **only with the knowledge of the application standing at the endpoints** of the communication system. Therefore, providing that questioned function as a feature of the communication system itself is not possible. (Sometimes an incomplete version of the function provided by the communication system may be useful as a performance enhancement.)

Placing Functionality: File Transfer...

- Goal: to transfer a file correctly between peers Method: break up file into messages, transfer messages
- Threats: network may drop, reorder, duplicate, or corrupt messages
- What if we have hop-by-hop reliability?
- Where must correct delivery be checked?

Placing Functionality: Performance Impact

Consider reliability? Assume a link has probability p of losing a packet; (1-p) of not losing a packet
Traversing n hops gives (1-p)ⁿ prob of delivery and 1- (1-p)ⁿ prob of drop
Assume typical Internet path of n = 15

Telecom Systems

Chae Y. Lee

Placing Functionality: Performance Impact

For a low loss rate $(p = 10^{-5})$,

 $P_{loss} = 1 - (1 - 10^{-5})^{15} = 1.5 \times 10^{-3} = .0015 (< 1\%)$

But for a higher rate (p = .01, say, for wireless),

$$P_{loss} = 1 - (1 - .01)^{15} = 0.14 !!$$

Internet was designed with < 1% path loss in mind; unfortunately, some parts today have much higher rates

Placing Functionality: Who Decides?

- Each layer uses its own frame/packet/message format (size, layout) to provide its service
- Application needs may not be communicated easily across layers
- Idea: allow application to decide the frame format most convenient to it (ALF)

Internet Design Philosophy

<u>Develop an effective technique for multiplexed</u> <u>utilization of existing interconnected networks</u>

- Other goals:
 - Robustness in the face of failure
 - Multiple types of communication services
 - Compatibility with large variety of networks
 - Distributed management, cost effective attachment, simple attachment, accountable

Internet Design Philosophy: Using Varieties of Networks

Make minimum assumptions on underlying networks

- Capable of transporting a message of reasonable size (say, 100 bytes minimum)
- Some form of addressing for non *point-to-point* or *multi-access* links
- Major issues: addressing, packet sizes

Internet Design Philosophy: Connection Robustness

- Endpoints need not re-establish communication during failures of intermediate devices
- Protect *connection* state (where?)
- Fate Sharing:
 - Place state only in endpoints
 - If connection is lost the communication is lost anyway

Internet Design Philosophy: Packet Switching

Packets: chunks of data

Consequences of fate sharing:

- Intermediate nodes must not have any essential connection state
- Desire to use packet switching with datagrams
- More trust is placed in end hosts
- Less trust in intermediate devices

Today's Internet

- A network of networks, comprising about 100,000 networks
- All hosts/routers run the IP protocol (today, IP version 4):
 - Datagram interface, best-effort host-to-host delivery
 - Routing based on global addressing
 - Common datagram format (IP packet)

Best Effort Delivery

Lost packets (usually due to congestion) Duplicated packets (retransmission) Damaged packets (channel noise) Re-ordered packets (routing changes)

Internet Design Futures

- Desire to differentiate some traffic and treat it specially (QoS)
- Using "Soft State" (state info for each flow to make resource allocation decision) in routers/switches:
 - Does not need to be explicitly deleted when it is no longer needed
 - Provides for enhanced services
 - Times out if not refreshed by end-points
 - Issues: traffic overhead, time-out values

Summary

Protocol layering breaks down complex problem into more manageable components, but introduces overhead Internet Protocol Stack Application/Transport/ Network/Link HTTP, TCP/UDP, IP, Ethernet/FDDI All hosts/routers run the IPv4 Best-effort host-to-host datagram delivery